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In the first part of this paper we establish sharp lower bounds on the number of
perfect matchings in benzenoid graphs and polyominoes. The results are then used
to determine which integers can appear as the number of perfect matchings of infi-
nitely many benzenoids and/or polyominoes. Finally, we consider the problem of con-
cealed non-Kekuléan polyominoes. It is shown that the smallest such polyomino has 15
squares, and that such polyominoes on n squares exist for all n > 15.
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1. Introduction

In this article we take further the line of research developed in a series of
recent papers on perfect matchings in plane bipartite graphs [1,2,3]. Common to
all three papers is the application of the structural theory of matchings [4] to
some problems concerning the structure and the enumeration of perfect match-
ing in such graphs. Here we restrict our attention to bipartite lattice animals, i.e.,
to the polyhexes and polyominoes, and show how the structural results from [1]
can be used to obtain sharp lower bounds on the number of perfect matchings
in these two classes of graphs. Then we proceed by using these results to answer
the question whether, for a given positive integer n, there are finitely or infinitely
many benzenoids (or polyominoes) with n perfect matchings. The case n = 0 is
discussed in more detail, and the paper is concluded by presenting the smallest
concealed non-Kekuléan polyomino.

2.  Definitions and preliminaries

A lattice animal is a 1-connected collection of congruent regular poly-
gons arranged in a plane in such a way that the interior of the collection is
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I-connected, and any two polygons that intersect in more than one point inter-
sect in a whole edge. From the conditions of regularity and congruence of the
basic polygons it follows that the lattice animals are subsets (with 1-connected
interior) of regular tilings of the plane. The three different regular tilings give rise
to three different classes of lattice animals. Here we consider only two of these
three classes, those consisting of squares (known as polyominoes), and those con-
sisting of regular hexagons (known also as polyhexes or benzenoid systems).

To each lattice animal we assign a graph by taking the vertices of polygons
as the vertices of the graph, and the sides of polygons as the edges of the graph.
The resulting animal graph is simple, plane, and bipartite. (We refer the reader to
any standard textbook, such as [5] or [6], for the graph-theoretic terms and con-
cepts not defined here.) The vertices lying on the border of the unbounded face
of an animal graph are called external; other vertices, if present, are called inter-
nal. An animal graph without internal vertices is catacondensed. Otherwise, the
graph is pericondensed. In the rest of this paper when referring to lattice animals
we will be referring to the corresponding animal graphs.

A perfect matching in a graph G is a collection M of edges of G such that
every vertex of G is incident with exactly one edge from M. An edge ¢ of G is
allowed if it appears in some perfect matching of G; otherwise, the edge is for-
bidden. A graph G is elementary if its allowed edges form a connected subgraph
of G. In chemical literature the elementary graphs, especially elementary benze-
noids, are also called normal. For connected bipartite graphs, the elementarity is
equivalent to the property that all edges are allowed ([4], p. 122).

Perfect matchings in benzenoid graphs are known in chemical literature as
Kekulé structures, and the benzenoids possessing them are called Kekuléan. The
literature on the subject of enumeration of perfect matchings in benzenoids is
vast. For a review, the reader might wish to see, e.g., [7] or [8] and the refer-
ences therein. These references contain a wealth of exact results valid for partic-
ular classes of benzenoid graphs. Here we are concerned with different type of
results: we are trying to establish lower bounds on the number of perfect match-
ings that will be valid across the whole spectrum of benzenoid and polyomino
graphs.

For normal (i.e. elementary) bipartite lattice animals the question was set-
tled in reference [3].

Theorem A. In a normal bipartite lattice animal with /& basic polygons there are
at least & 4+ 1 different perfect matchings. m]

The lower bound of Theorem A is sharp. It can be easily seen that the lat-
tice animals with & basic polygons shown in figure 1 are normal and have exactly
h + 1 different perfect matchings.
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Figure 1. Extermal lattice animals with respect to the number of perfect matchings.

An immediate consequence of Theorem A is that, for a given positive inte-
ger n, there are finitely many normal bipartite lattice animals with exactly n (or
with at most n) perfect matchings.

Let us now consider the lattice animals with perfect matchings that are not
normal. In the benzenoid context such graphs are called essentially disconnected,
and we extend the terminology also to the case of polyominoes. The name is jus-
tified by the fact that removal of forbidden edges from such a graph results in a
disconnected collection of normal components. If all faces of a normal compo-
nent of a graph G are also faces of G, the normal component is called a normal
block. It can be shown [1] that all normal components of essentially disconnected
lattice animals are indeed normal blocks. The following two results from the same
reference will be essential for establishing lower bounds on the number of perfect
matchings in non-normal bipartite lattice animals. We quote them in a slightly
more general terms than needed in this paper, so we leave out the precise defini-
tion of weakly elementary graphs. It suffices to know that the class is wide enough
to encompass plane bipartite graphs, and hence also the bipartite lattice animals

[1].

Theorem B. Let a graph G be weakly elementary, without vertices of degree one.
If G has a forbidden edge, then G has at least two normal blocks. O

Theorem C. Let a graph G be 2-connected and weakly elementary. Assume that
G has more than one cycle and all vertices of degree 2 lie on the boundary of
G. If G has m > 1 distinct cycles as normal blocks, then G has m + 2 normal
blocks. o

3. Lower bounds

The lower bounds we are seeking to establish follow from Theorems B and C
and the fact that the number of perfect matchings in a non-elementary graph is
equal to the product of numbers of perfect matchings of its normal components.
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Theorem 1. Let G be an essentially disconnected benzenoid graph with a perfect
matching. Then G has at least 9 different perfect matchings.

Proof. According to Theorem B, G has at least two normal blocks. If none of
these is a single hexagon, then each of them must have at least three different
perfect matchings, and the claim of the theorem follows. If there are m normal
blocks that are single hexagons, Theorem C gives us the existence of at least two
normal blocks with more than one hexagon, and the minimal number of differ-
ent perfect matchings in G is at least 2 - 32, m]

By merging Theorem A and Theorem 1 we obtain the following result.

Corollary 2. Let G be a benzenoid graph with a perfect matching and at least 8
hexagons. Then G has at least 9 different perfect matchings.

Proof. If G is normal, the claim follows from Theorem A; otherwise, it follows
from Theorem 1. ]

The lower bound of Theorem 1 is the best possible, since for all 2z > 5 there
are Kekuléan benzenoids with ~ hexagons and exactly 9 perfect matchings. An
example of such a graph is shown in figure 2.

Hence, the list of Kekuléan benzenoids with less than 9 perfect matchings
is finite and indeed short.

The case of polyominoes is a bit more complicated. The simplest normal
polyomino that is not a single square is a domino consisting of two squares that
share a side. We first show that among the normal blocks of an essentially dis-
connected polyomino must be at least two that are neither a single square nor a
domino. We call such a normal block proper.

Lemma 3. An essentially disconnected polyomino has at least two proper normal
blocks.

Proof. Let G be an essentially disconnected polyomino with k; single squares
and k, dominoes as normal blocks. By deleting the edge common to both
squares in each domino normal block, we obtain a graph G’ that satisfies the

Figure 2. A benzenoid with & hexagons and only 9 perfect matchings.
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conditions of Theorem C and that has k; + k; single cycles as normal blocks.
Hence, G’ must have at least two normal blocks that are neither single squares
nor dominoes. From construction of G’ it follows that all its normal blocks are
also normal blocks of G, and that the number of perfect matchings in G’ does
not exceed the number of perfect matchings in G. m]

That the domino graph can appear as a normal block of an essentially dis-
connected polyomino can be seen from the example shown in figure 3.

Let us pause here for a moment and comment on a difference between
polyominoes and benzenoids that prevented us from using the same trick in the
benzenoid case. In figure 4 is shown a situation where deletion of the middle
edge in a normal block consisting of a hexagon dimer results in a graph that
does not satisfy the conditions of Theorem C, since it has an internal vertex of
degree 2. Hence, the hexagon dimers cannot be dismissed when counting proper
normal blocks.

Figure 3. Domino normal block (bold) of a polyomino.

—>.

Figure 4. Hexagon dimers are proper normal blocks.
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Theorem 4. An essentially disconnected polyomino has at least 16 different per-
fect matchings.

Proof. It follows from Lemma 3 that any essentially disconnected polyomino
must have at least two proper normal blocks. The smallest proper normal block
must have at least three squares. There are two such polyominoes, one of them
straight with 5 perfect matchings, the other one L-shaped, with 4 perfect match-
ings. Hence, in the worst case the original polyomino must contain at least 16
different perfect matchings. m]

Corollary 5. Let G be a polyomino with a perfect matching and at least 15
squares. Then G has at least 16 perfect matchings. o

As in the benzenoid case, the lower bound of Theorem 4 is the best possi-
ble, since for all n > 9 there is a Kekuléan polyomino with n squares and exactly
16 perfect matchings. The first few members of this series of polyominoes are
shown in figure 5. The normal blocks are shown in bold.

Again, the list of all polyominoes with less than 16 perfect matchings is
finite.

4. Infinite realizability

Motivated by examples from figures 2 and 5, we may ask the following
question: For which positive integers n there are infinitely many benzenoids with
n perfect matchings? Obviously, the set of such numbers is non-empty, since it
contains number nine. Let us call such numbers infinitely realizable by benze-
noids. The set of positive integers infinitely realizable by polyominoes is defined
in an analogous manner. Again, this set is non-empty, since it contains at least
the number 16.

It is clear from Theorem A that normal lattice animals cannot contribute
to infinite realizability. Hence, no positive integer n < 9 is infinitely realizable
by benzenoids, and no positive integer n < 16 is infinitely realizable by poly-
ominoes. Further, the numbers of perfect matchings in essentially disconnected
lattice animals are necessary composite; this follows from Theorem B. Hence, we
have established the following result.

Figure 5. Infinite family of polyominoes with 16 perfect matchings.



T. Dosli¢ | Perfect matchings in bipartite lattice animals 623

Corollary 6. No prime number is infinitely realizable by bipartite lattice
animals. m]

Corollary 6 solves only a part of our problem. To settle the rest, we treat
the benzenoids and the polyominoes separately.

Theorem 7. A positive integer n > 9 is infinitely realizable by benzenoids if and
only if it is not of the form k - p, where p is a prime number, and k € {1, 2}.

Proof. Let n € N be of the form 2p, where p is a prime number. If #n is infi-
nitely realizable by benzenoids, then there must be infinitely many essentially dis-
connected benzenoids with 2p perfect matchings. Since p perfect matchings must
all be contained in one normal block, the remaining normal block must contain
only two perfect matchings. The only normal benzenoid with two perfect match-
ings is a single hexagon, and this contradicts Theorem C. Together with Corol-
lary 6, this proves that no integer of the form p or 2p is infinitely realizable by
benzenoids for a prime number p. The claim of the theorem will follow if we
show that all other positive integers are infinitely realizable. So, take a positive
integer n which is composite and not of the form 2p for some prime number p.
If n is odd, then it must be of the form n = pg, for some odd positive integers
p and ¢g. We construct an infinite family of benzenoids with n perfect match-
ings by connecting two straight linear chains of hexagons of length p — 1 and
q — 1, respectively, by a straight linear chain of hexagons of arbitrary length in
the manner shown in figure 6(a). If n is even, then n is of the form n = 27gq,
where p > 2 and ¢ is odd. An infinite family of benzenoids with n perfect match-
ings is constructed in the manner shown in figure 6(b). m|

Figure 6. Infinite realizability by benzenoids.
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The polyomino case is a bit more complicated, but the proof follows along
the same lines.

Theorem 8. A positive integer n > 16, n # 18, n # 27, is infinitely realizable by
polyominoes if and only if it is not of the form k- p, where p is a prime number,
and k € {1, 2, 3}.

Proof. The impossibility of infinite realizability for the numbers of the form p,
2p, and 3p, where p is prime, and for the exceptional cases n = 18 and n = 27,
follows from Theorem C by the same arguments as in the benzenoid case. For
any other n we construct an infinite family of polyominoes with n perfect match-
ings by replacing the normal blocks of polyominoes from figure 5 by zig-zag
polyominoes from figure 1 of the appropriate length. o

We conclude this section with a short remark concerning the number one.
This is the only positive integer that is not realizable, neither finitely nor infi-
nitely, by bipartite lattice animals. This remark also serves as a bridge toward
the next section, where we consider the realizability of zero.

5. Concealed non-Kekuléan polyominoes

Obviously, zero is infinitely realizable by both types of bipartite lattice ani-
mals, since there are infinitely many non-Kekuléan benzenoids and polyominoes.
The simplest are those constructed by appending a straight linear chain of basic
polygons to the basic non-Kekuléan configuration, as shown in figure 7. (The
basic non-Kekuléan configurations are shown in bold). This infinite realizability
appears, however, rather trivial, since it is obvious that these lattice animals have
an odd number of vertices, and hence cannot contain a perfect matching. A bit
less trivial are the families shown in figure 8; their members have an even number
of vertices, but the classes of bipartition are not of equal size. Again, the basic
semi-trivial shapes are shown in bold.

The existence of non-Kekuléan benzenoids with the bipartition classes of
equal size (called concealed non-Kekuléan benzenoids) has been a part of benze-
noid folklore for many decades. The smallest example is shown in figure 9, and
an infinite family of such graphs can be constructed by cutting the graph along

& e

Figure 7. Trivially non-Kekuléan lattice animals.
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Figure 8. Semi-trivially non-Kekuléan lattice animals.

Sees

Figure 9. The smallest concealed non-Kekuléan benzenoid.

the dashed line (shown in bold) and inserting a straight linear chain of hexa-
gons of arbitrary length. Hence, zero is non-trivially infinitely realizable by benz-
enoids. The polyomino case is settled by the following result.

Theorem 9. For each 4 > 15 there is a concealed non-Kekuléan polyomino on &
squares.

Proof. 1t can be easily checked that the leftmost polyomino in figure 10 is con-
cealed non-Kekuléan. Both properties are retained by all members of the family
constructed by lengthening the “bridge” between two copies of the basic semi-
trivial shape and reflecting one of them for even lengths of the bridge. o

Corollary 10. Zero is non-trivially infinitely realizable by bipartite lattice
animals. o

The leftmost polyomino in figure 10 is the smallest possible, in the sense
that no concealed non-Kekuléan polyomino can have less than 15 squares.

Theorem 11. The smallest possible concealed non-Kekuléan polyomino has 15
squares.
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Figure 10. Infinite family of concealed non-Kekuléan polyominoes.

Figure 11. The structure of the smallest concealed non-Kekuléan polyomino.

Proof. An edge cut in a graph G is a set C of edges whose removal disconnects
G. (We remove only the edges, their end-vertices are not removed). We start
by showing that a minimal (in the sense of the number of squares) concealed
non-Kekuléan polyomino must have an edge cut that consists of two parallel
edges of a single square. Let us suppose that such an edge cut does not exist in
a minimal concealed non-Kekuléan polyomino P. Let us orient P in the plane
so that its edges run vertically and horizontally. Then P must have either a ver-
tical or a horizontal edge cut that has more than two edges. Let C be any such
cut. At least two edges of C lye on the outer boundary of P. Removal of one
of these two edges will affect neither the concealedness nor the non-Kekulénic-
ity of P, and will result in a polyomino with the same properties that has one
square less than P, contradicting the assumption of minimality. Hence, any mini-
mal concealed non-Kekuléan polyomino must be of the form shown in figure 11.

Next we show that for each of the components C; and C, the classes of
respective bipartitions must differ in size by at least two. As the total number of
vertices must be even, the numbers of vertices in C; and C, must be of the same
parity. Let us suppose that they are odd. Then the surplus of black vertices in C|
must be exactly balanced by the surplus of white vertices in C,. Let this surplus
be equal to one. Consider the black vertex in C; that is connected to a white ver-
tex in C, by the edge e from the edge cut C = {e, f}. By removing the edge e
together with its endpoints and the edge f without its endpoints, we obtain two
polyominoes, C| and Cj. If both of them have a perfect matching, then the union
of these matchings together with the edge ¢ would make a perfect matching in
P, a contradiction with the non-Kekulénicity of P. Hence, at least one of C} and
C} must be non-Kekuléan. Let it be Cj. But then, the number of vertices of C|
is even, and the classes of bipartition are of equal size, and this makes C| a con-
cealed non-Kekuléan polyomino strictly smaller than P, again a contradiction.
Hence, both C; and C, must have an even number of vertices. If we suppose that
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the classes of bipartition of, say, C; are of equal size, then the same must be valid
for C,. Since P was non-Kekuléan, at least one of C; and C, must be non-Ke-
kuléan, thus contradicting the minimality of P. Hence, the classes of bipartition
in C; and C, must be even and differ in size by at least two. The smallest such
polyomino has at least 7 squares, and the claim of the theorem follows. m]
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